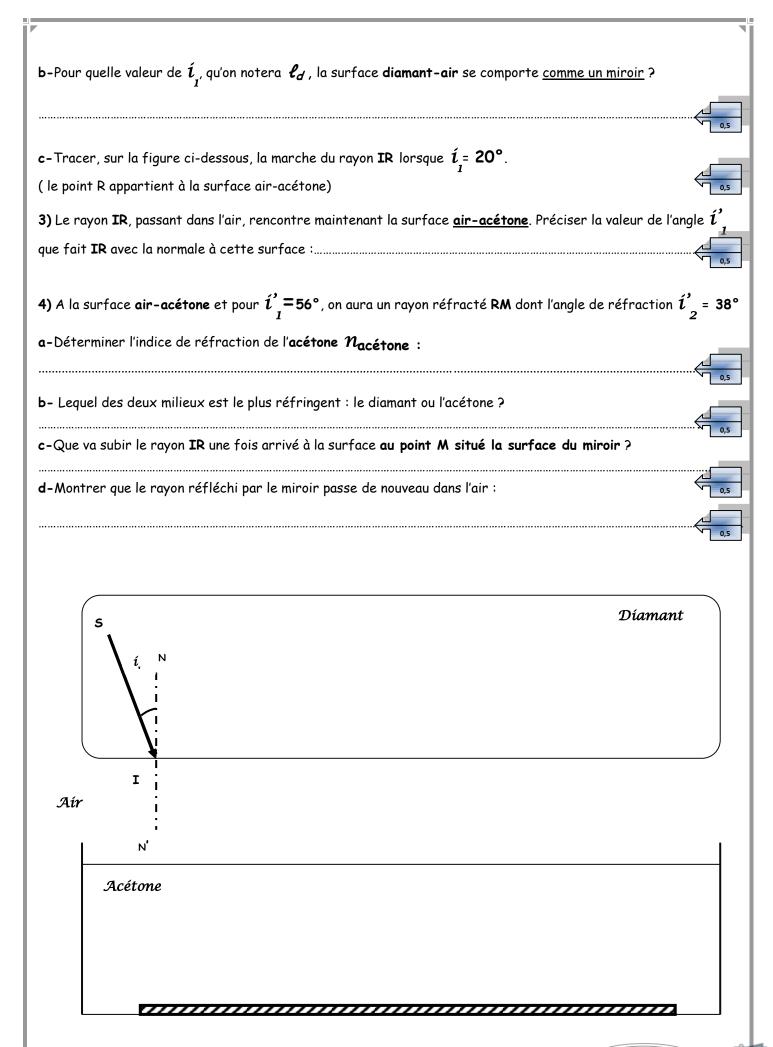
Lycée Ahmed Amara El Kef Prof: Galaï Abdelhamid

Devoir de synthèse N°3

Sciences Physiques


2 EMESCIENCES 3&4

DATE: 30/05/2013

DURÉE: 2H

Nom:	
Exercice N°1:	
1) Soit les hydrocarbures suivants :	
A) CH ₃ - CH - CH - CH ₃ B) CH ₃ - CH ₂ - CH - CH - CH ₃ C) CH ₃ - CH ₂ - C = CH ₃	2
$ m CH_3$	
D) CH ₃ - CH ₂ - CH = CH - CH ₃	
a- Donner la famille chimique de chacun : A :; B :; C :; D :	0.5
b- Donner le nom de ces quatre hydrocarbures :	
c- Rappeler la définition des isomères :	0.5
d- Parmi ces hydrocarbures, quels sont les deux composés isomères. Justifier :	0,5
3) Un hydrocarbure C _x H _y a une atomicité égale à 23 et sa molécule comporte 9 atomes d'hydrogène plus que	01
d'atomes de carbone.	
a- Déterminer la formule brute de cet hydrocarbure :	
	01
b- S'agit-il d'un alcane ou d'un alcène? Pourquoi?	0.5
4) Un hydrocarbure aliphatique insaturé, de masse molaire M = 68 g.mol ⁻¹ , dont la chaine carbonée renferme u	ine
triple liaison. Trouver la formule brute de cet hydrocarbure :	0,5
<u>Données:</u> $M_c = 12 \text{ g.mol}^{-1}$; $M_H = 1 \text{ g.mol}^{-1}$ Exercice $N^{\circ}2$:	
Dans le but d'atteindre l'équivalence, on verse un volume $V_b = 12$ mL d'une solution (S_1 : Soude) de concentration $C_b = 5.10^{-2}$ mol.L ⁻¹ dans u	un
volume $V_a = 8$ mL d'une solution (S_2) d'acide chlorhydrique. <u>Données</u> : $5 = 10^{0.7}$; $V_M = 22,4$ L.mol ⁻¹ 1) Ecrire l'équation bilan de la réaction et l'équation simplifiée :	
3	
2) Calculer le PH de S ₁ :	

3) Calculer la concentration C_a de la solution (S_2) :
4) Calculer le volume V de la solution (S_2) qu'il a fallu dissoudre dans un volume $V = 100$ mL d'eau pour obtenir
cette solution :
01
Physique Exercice N°1 (4,5 points):
Un corps (C) de masse $m = 400$ g descend une piste AB inclinée d'un angle $\beta = 30^{\circ}$ par rapport à
I'horizontale à une vitesse constante $V = 7 \text{ m.s}^{-1}$. Les forces de frottement de la piste ainsi que celles de l'air
ont une résultante F parallèle à la pente de valeur 2N. Avec AB=30m, g = 10 N.Kg ⁻¹
1) Faire l'inventaire des forces agissant sur le corps (C):
0,5
2) Déterminer le travail du poids de (C) et préciser sa nature dans les deux cas :
-En passant de A vers B :
β β
-En passant de B vers A :
3) Préciser la nature du travail de la force F:
4) Déterminer puis calculer le travail de cette force, lorsque (C) parcourt une distance d = 14 m?
5) En déduire la puissance mécanique de F dans ce trajet (lorsque (C) parcourt 14 m)?
5) En deduir e la paissance mecanique de 1 dans ce majer (lor sque (c) par cour 1 14 m) ?
Exercice N°2 (4,5 points):
Deux milieux transparents, l'un le <u>diamant</u> et l'autre l <u>'acétone</u> où on a placé un <u>miroir</u> au fond, disposés comme
le montre la figure suivante. $\underline{Donn\acute{e}s}$: sin 20° = 0,34 , sin 56° = 0,83 , sin 38° = 0,61
1) Définir la réfraction :
0,5
2) Un rayon lumineux SI, faisant un angle \hat{t}_1 = 20° avec la normale (N'N), rencontre la surface <u>diamant-air</u> .
a- Déterminer la valeur de l'angle i_2 que fait le rayon réfracté IR avec la normale (N'N) , sachant que l'indice de
réfraction du diamant est n_d = 2,44 :

Exercice N°3 (3 points):	/ F		
Un glaçon de volume V=8 cm³ flotte dans verre rempli d'eau.			
a- Représenter sur le schéma les forces exercées sur le glaçon.			
b- Calculer la masse du glaçon puis la valeur de son poids :	eau		
01			
c- Donner l'expression de la poussée d'Archimède et en déduire la valeur du volume immergé V ; du glaçon :			
01			
d-Le glaçon fond, l'eau ne déborde pas du verre, expliquer pourquoi ceci n'est pas possible dans ces conditions?			
	0,5		

<u>Données</u>: Masses volumiques: Peau = 1000 kg.m⁻³; Peau <u>solide</u> (glaçon)=800 kg.m⁻³; || g|| = 9,81 N.kg⁻¹

